基本不等式公式四个
√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)(3)a+b≥2ab。(当且仅当a=b时,等号成立)(4)ab≤(a+b)/4。(当且仅当a=b时,等号成立)(5)||a|-|b| |≤|a+b|≤|a|+|b|。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。
个基本不等式的公式如下:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)当且仅当a=b时,等号成a+b≥2√(ab)。(当且仅当a=b时,等号成立),ab≤[(a+b)/2]当且仅当a=b时,等号成立 原理:不等式F(x)G(x)与不等式G(x)F(x)同解。
不等式的四种基本公式是什么?
四个基本不等式公式如下:四个基本不等式公式:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)a+b≥2√(ab)。(当且仅当a=b时,等号成立) ab≤[(a+b)/2]。
基本不等式:对于任意实数a和b,有根号(ab)大于等于(a+b)除2,这个不等式可以变形为a2-2ab+b2大于等于0,即a2+b2≥2ab,ab≤a与b的平均数的平方。
其中四个基本的不等式公式分别叫做均方、算术平均、几何平均和调安宁均。不等式分为严格不等式与非严格不等式,用纯粹的大于号、小于号连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)连接的不等式称为非严格不等式,或称广义不等式。
4个基本不等式的公式高中
1、高中4个基本不等式链:√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。基本不等式 基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。不等式定理口诀 解不等式的途径,利用函数的性质。
2、√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)(3)a+b≥2ab。(当且仅当a=b时,等号成立)(4)ab≤(a+b)/4。(当且仅当a=b时,等号成立)(5)||a|-|b| |≤|a+b|≤|a|+|b|。
3、在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。